Science Projects > Physics & Engineering Projects > Mousetrap Physics: How Does a Mousetrap Work? 

Mousetrap Physics: How Does a Mousetrap Work?

Background on Mousetraps

With just a few parts (a wooden base, a spring, a metal bar, and a trigger mechanism) it can do its job quickly and efficiently. It is so simple and functional that it has created a cliche: “to build a better mousetrap” means to improve on the best, or reach the heights of achievement.

But it isn’t just a figure of speech; people continue trying to build a better mousetrap. There are already 4,400 mousetrap patents issued by the Patent Office, and 400 people apply for new patents every year! But only a couple dozen of those thousands of mousetrap designs have ever made money, and the simple snap-back is still selling strong more than one hundred years after it was patented in 1899.

Not only can this machine get rid of mice, it can teach us a lot about physics, too!

How Does a Mousetrap Work?

When a mousetrap is set, the spring in the center is compressed, becoming a source full of potential energy. This energy is being stored, not used, but as soon as the trap is released, it is converted to kinetic energy (the energy of motion) that propels the snapper arm forward.

the levers of a mousetrapA mousetrap makes use of a simple machine called a lever.

There are three different classes of levers. A first-class lever is like a teeter-totter at the park. The pivot point is called the fulcrum, the person being lifted is the load, and the person on the other end is the effort force.

A lever makes doing work easier. You can lift someone with a teeter totter much easier than if you tried to pick them up!

Second- and third-class levers have different arrangements of the components of a lever. The fulcrum, or pivot point, is at one end, instead of in the middle.

In a second-class lever the effort force is at the other end, with the load in the middle.

In a third-class lever, the load is at the end and the effort force is between the fulcrum and the load.

When you set the mousetrap, you are using a second-class lever. The load is the arm of the spring that is being pushed down to compress the spring. The effort force is your fingers on the end of the snapper arm, and the fulcrum is the pivot point in the middle of the trap. When the mousetrap is released, however, it acts as a third-class lever. The snapper arm becomes the load, and the spring arm becomes the effort force moving the load.

Of course, all that potential energy can be put to other uses besides getting rid of mice. In the projects below, you’ll use a mousetrap as a power source for a catapult and a car!


More Physics Projects:

Teaching Homeschool

Welcome! After you finish this article, we invite you to read other articles to assist you in teaching science at home on the Resource Center, which consists of hundreds of free science articles!

Shop for Science Supplies!

Home Science Tools offers a wide variety of science products and kits. Find affordable beakers, dissection supplies, chemicals, microscopes, and everything else you need to teach science for all ages!

Related Articles

29 Creative Ways to Use a Home Science Tools Beaker Mug

29 Creative Ways to Use a Home Science Tools Beaker Mug

Infuse a dash of experimentation into your daily routine with a Home Science Tools Beaker Mug! As we gear up for our 29th Anniversary, we've compiled a list of 29 exciting ways to use your beaker mug in everyday life. From brewing up creative concoctions to unleashing...

Next Generation Science Standards (NGSS)

Next Generation Science Standards (NGSS)

What are the Next Generation Science Standards (NGSS)?  These guidelines summarize what students “should” know and be able to do in different learning levels of science. The NGSS is based on research showing that students who are well-prepared for the future need...

The Beginners Guide to Choosing a Homeschool Science Curriculum

The Beginners Guide to Choosing a Homeschool Science Curriculum

Get Started: Researching Homeschool Science   Curriculums  Teaching homeschool science is a great way for families to personalize their child's education while giving you the flexibility to teach it your way. There are many wonderful science curriculums...

Valentine’s Day Science Projects

Valentine’s Day Science Projects

Valentine’s Day is a great opportunity to inspire your student’s LOVE for science! Engage your kids with science concepts such as diffusion, density, and surfactants. These three, hands-on science projects include the Dancing Conversational Hearts, Rainbow Heart, and...

Synthetic Frog Dissection Guide Project

Synthetic Frog Dissection Guide Project

Frog dissections are a great way to learn about the human body, as frogs have many organs and tissues similar to those of humans. It is important to determine which type of dissection is best for your student or child. Some individuals do not enjoy performing...

should I learn computer coding